Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Sensors (Basel) ; 24(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610374

RESUMO

After an ACL injury, rehabilitation consists of multiple phases, and progress between these phases is guided by subjective visual assessments of activities such as running, hopping, jump landing, etc. Estimation of objective kinetic measures like knee joint moments and GRF during assessment can help physiotherapists gain insights on knee loading and tailor rehabilitation protocols. Conventional methods deployed to estimate kinetics require complex, expensive systems and are limited to laboratory settings. Alternatively, multiple algorithms have been proposed in the literature to estimate kinetics from kinematics measured using only IMUs. However, the knowledge about their accuracy and generalizability for patient populations is still limited. Therefore, this article aims to identify the available algorithms for the estimation of kinetic parameters using kinematics measured only from IMUs and to evaluate their applicability in ACL rehabilitation through a comprehensive systematic review. The papers identified through the search were categorized based on the modelling techniques and kinetic parameters of interest, and subsequently compared based on the accuracies achieved and applicability for ACL patients during rehabilitation. IMUs have exhibited potential in estimating kinetic parameters with good accuracy, particularly for sagittal movements in healthy cohorts. However, several shortcomings were identified and future directions for improvement have been proposed, including extension of proposed algorithms to accommodate multiplanar movements and validation of the proposed techniques in diverse patient populations and in particular the ACL population.


Assuntos
Lesões do Ligamento Cruzado Anterior , Tomada de Decisão Clínica , Humanos , Algoritmos , Nível de Saúde , Cinética
2.
Sensors (Basel) ; 23(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37631813

RESUMO

Integrated Ultra-wideband (UWB) and Magnetic Inertial Measurement Unit (MIMU) sensor systems have been gaining popularity for pedestrian tracking and indoor localization applications, mainly due to their complementary error characteristics that can be exploited to achieve higher accuracies via a data fusion approach. These integrated sensor systems have the potential for improving the ambulatory 3D analysis of human movement (estimating 3D kinematics of body segments and joints) over systems using only on-body MIMUs. For this, high accuracy is required in the estimation of the relative positions of all on-body integrated UWB/MIMU sensor modules. So far, these integrated UWB/MIMU sensors have not been reported to have been applied for full-body ambulatory 3D analysis of human movement. Also, no review articles have been found that have analyzed and summarized the methods integrating UWB and MIMU sensors for on-body applications. Therefore, a comprehensive analysis of this technology is essential to identify its potential for application in 3D analysis of human movement. This article thus aims to provide such a comprehensive analysis through a structured technical review of the methods integrating UWB and MIMU sensors for accurate position estimation in the context of the application for 3D analysis of human movement. The methods used for integration are all summarized along with the accuracies that are reported in the reviewed articles. In addition, the gaps that are required to be addressed for making this system applicable for the 3D analysis of human movement are discussed.


Assuntos
Movimento , Pedestres , Humanos , Tecnologia
3.
Neurorehabil Neural Repair ; 37(9): 640-651, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37644725

RESUMO

BACKGROUND: Over activity of the rectus femoris is often cited as a main cause for stiff knee gait (SKG). Botulinum toxin (BoNT) can be used to reduce this over activity. Inconsistent results for the effect of BoNT injections were found in literature which can possibly be explained by the study design as these were uncontrolled or non-randomized studies. OBJECTIVE: To conduct a randomized controlled trial (RCT) to investigate the effect of botulinum toxin type A (BoNT-A) injections in the rectus femoris on gait kinematics and functional outcome in adult stroke patients. METHODS: Twenty-six participants were included in this triple-blind cross-over RCT. The intervention consisted of an injection with BoNT-A. Placebo is an injection with saline. Besides knee and hip kinematics, functional outcomes were measured. RESULTS: Comparison of the effect of BoNT-A injection to placebo injection showed a significant increase in peak knee flexion and knee range of motion of 6.7° and 4.8° respectively. There was no difference in hip kinematics. In functional outcomes, only the 6 Minute Walking Test showed a significant increase of 18.3 m. CONCLUSIONS: BoNT-A injections in the rectus femoris is a valuable treatment option for stroke patients walking with a SKG to improve knee kinematics. To study the effect on functional outcome more research is necessary with different functional outcome measures that can capture the effect in kinematics. It is important to use kinematic measurements to demonstrate effects in quality of movement that are not captured by commonly used functional outcome measurements post stroke.Clinical Trial Registration: https://trialsearch.who.int/Trial2.aspx?TrialID=NTR2169.


Assuntos
Toxinas Botulínicas Tipo A , Transtornos Neurológicos da Marcha , Transtornos dos Movimentos , Acidente Vascular Cerebral , Adulto , Humanos , Músculo Quadríceps , Espasticidade Muscular/etiologia , Marcha , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Amplitude de Movimento Articular , Transtornos Neurológicos da Marcha/etiologia , Resultado do Tratamento
4.
Sci Data ; 10(1): 461, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452137

RESUMO

This data descriptor describes the Roessingh Research & Development-MyLeg database for activity prediction (MyPredict), containing three data sets. These data sets contain data from 55 able-bodied subjects, mean age 24 ± 2 years, measured in 85 measurement sessions. Measurement sessions consisted of trials containing sitting, standing, overground walking, stair ascent, stair descent, ramp ascent, ramp descent, walking on uneven terrain and walking in simulated confined spaces. Subjects were measured using eight inertial measurement units in combination with different types of sEMG. Recorded kinematics consisted of joint angles, sensor accelerations, angular velocity, orientation and virtual marker positions. sEMG was recorded using bipolar sEMG, multi-array sEMG or a combination of both. All data showed excellent correlation with other online available data sets. The data reported in this descriptor forms a solid basis for research into myoelectric pattern recognition, myoelectric control development and electromyography to be used in data-driven applications.


Assuntos
Marcha , Caminhada , Humanos , Adulto Jovem , Adulto , Eletromiografia , Fenômenos Biomecânicos , Extremidade Inferior
5.
Front Sports Act Living ; 5: 1176466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255726

RESUMO

To understand the mechanisms causing running injuries, it is crucial to get insights into biomechanical loading in the runners' environment. Ground reaction forces (GRFs) describe the external forces on the body during running, however, measuring these forces is usually only possible in a gait laboratory. Previous studies show that it is possible to use inertial measurement units (IMUs) to estimate vertical forces, however, forces in anterior-posterior direction play an important role in the push-off. Furthermore, to perform an inverse dynamics approach, for modelling tissue specific loads, 3D GRFs are needed as input. Therefore, the goal of this work was to estimate 3D GRFs using three inertial measurement units. Twelve rear foot strike runners did nine trials at three different velocities (10, 12 and 14 km/h) and three stride frequencies (preferred and preferred ± 10%) on an instrumented treadmill. Then, data from IMUs placed on the pelvis and lower legs were used as input for artificial neural networks (ANNs) to estimate 3D GRFs. Additionally, estimated vertical GRF from a physical model was used as input to create a hybrid machine learning model. Using different splits in validation and training data, different ANNs were fitted and assembled into an ensemble model. Leave-one-subject-out cross-validation was used to validate the models. Performance of the machine learning, hybrid machine learning and a physical model were compared. The estimated vs. measured GRF for the hybrid model had a RMSE normalized over the full range of values of 10.8, 7.8 and 6.8% and a Pearson correlation coefficient of 0.58, 0.91, 0.97 for the mediolateral direction, posterior-anterior and vertical direction respectively. Performance for the three compared models was similar. The ensemble models showed higher model accuracy compared to the ensemble-members. This study is the first to estimate 3D GRF during continuous running from IMUs and shows that it is possible to estimate GRF in posterior-anterior and vertical direction, making it possible to estimate these forces in the outdoor setting. This step towards quantification of biomechanical load in the runners' environment is helpful to gain a better understanding of the development of running injuries.

6.
Front Sports Act Living ; 5: 1085513, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139307

RESUMO

Measuring impact-related quantities in running is of interest to improve the running technique. Many quantities are typically measured in a controlled laboratory setting, even though most runners run in uncontrolled outdoor environments. While monitoring running mechanics in an uncontrolled environment, a decrease in speed or stride frequency can mask fatigue-related changes in running mechanics. Hence, this study aimed to quantify and correct the subject-specific effects of running speed and stride frequency on changes in impact-related running mechanics during a fatiguing outdoor run. Seven runners ran a competitive marathon while peak tibial acceleration and knee angles were measured with inertial measurement units. Running speed was measured through sports watches. Median values over segments of 25 strides throughout the marathon were computed and used to create subject-specific multiple linear regression models. These models predicted peak tibial acceleration, knee angles at initial contact, and maximum stance phase knee flexion based on running speed and stride frequency. Data were corrected for individual speed and stride frequency effects during the marathon. The speed and stride frequency corrected and uncorrected data were divided into ten stages to investigate the effect of marathon stage on mechanical quantities. This study showed that running speed and stride frequency explained, on average, 20%-30% of the variance in peak tibial acceleration, knee angles at initial contact, and maximum stance phase knee angles while running in an uncontrolled setting. Regression coefficients for speed and stride frequency varied strongly between subjects. Speed and stride frequency corrected peak tibial acceleration, and maximum stance phase knee flexion increased throughout the marathon. At the same time, uncorrected maximum stance phase knee angles showed no significant differences between marathon stages due to a decrease in running speed. Hence, subject-specific effects of changes in speed and stride frequency influence the interpretation of running mechanics and are relevant when monitoring, or comparing the gait pattern between runs in uncontrolled environments.

8.
Sports Biomech ; : 1-18, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36645012

RESUMO

Peak tibial acceleration (PTA) is a widely used indicator of tibial bone loading. Indirect bone loading measures are of interest to reduce the risk of stress fractures during running. However, tibial compressive forces are caused by both internal muscle forces and external ground reaction forces. PTA might reflect forces from outside the body, but likely not the compressive force from muscles on the tibial bone. Hence, the strength of the relationship between PTA and maximum tibial compression forces in rearfoot-striking runners was investigated. Twelve runners ran on an instrumented treadmill while tibial acceleration was captured with accelerometers. Force plate and inertial measurement unit data were spatially aligned with a novel method based on the centre of pressure crossing a virtual toe marker. The correlation coefficient between maximum tibial compression forces and PTA was 0.04 ± 0.14 with a range of -0.15 to +0.28. This study showed a very weak and non-significant correlation between PTA and maximum tibial compression forces while running on a level treadmill at a single speed. Hence, PTA as an indicator for tibial bone loading should be reconsidered, as PTA does not provide a complete picture of both internal and external compressive forces on the tibial bone. .

9.
J Neuroeng Rehabil ; 20(1): 1, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635703

RESUMO

BACKGROUND: When developing new lower limb prostheses, prototypes are tested to obtain insights into the performance. However, large variations between research protocols may complicate establishing the potential added value of newly developed prototypes over other prostheses. OBJECTIVE: This review aims at identifying participant characteristics, research protocols, reference values, aims, and corresponding outcome measures used during prosthesis prototype testing on people with a transfemoral amputation. METHODS: A systematic search was done on PubMed and Scopus from 2000 to December 2020. Articles were included if testing was done on adults with transfemoral or knee disarticulation amputation; testing involved walking with a non-commercially available prototype leg prosthesis consisting of at least a knee component; and included evaluations of the participants' functioning with the prosthesis prototype. RESULTS: From the initial search of 2027 articles, 48 articles were included in this review. 20 studies were single-subject studies and 4 studies included a cohort of 10 or more persons with a transfemoral amputation. Only 5 articles reported all the pre-defined participant characteristics that were deemed relevant. The familiarization time with the prosthesis prototype prior to testing ranged from 5 to 10 min to 3 months; in 25% of the articles did not mention the extent of the familiarization period. Mobility was most often mentioned as the development or testing aim. A total of 270 outcome measures were identified, kinetic/kinematic gait parameters were most often reported. The majority of outcome measures corresponded to the mobility aim. For 48% of the stated development aims and 4% of the testing aims, no corresponding outcome measure could be assigned. Results indicated large inconsistencies in research protocols and outcome measures used to validate pre-determined aims. CONCLUSIONS: The large variation in prosthesis prototype testing and reporting calls for the development of a core set of reported participant characteristics, testing protocols, and specific and well-founded outcome measures, tailored to the various aims and development phases. The use of such a core set can give greater insights into progress of developments and determine which developments have additional benefits over the state-of-the-art. This review may contribute as initial input towards the development of such a core set.


Assuntos
Amputados , Membros Artificiais , Adulto , Humanos , Amputação Cirúrgica , Marcha , Caminhada , Joelho
10.
Gait Posture ; 99: 60-75, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332318

RESUMO

BACKGROUND: Runners have a high risk of acquiring a running-related injury. Understanding the mechanisms of impact force attenuation into the body when a runner fatigues might give insight into the role of running kinematics on the aetiology of overuse injuries. RESEARCH QUESTIONS: How do running kinematics change due to running-induced fatigue? And what is the influence of experience level on changes in running kinematics due to fatigue? METHODS: Three electronic databases were searched: PubMed, Web of Science, and Scopus. This resulted in 33 articles and 19 kinematic quantities being included in this review. A quality assessment was performed on all included articles and meta-analyses were performed for 18 kinematic quantities. RESULTS AND SIGNIFICANCE: Main findings included an increase in peak acceleration at the tibia and a decrease in leg stiffness after a fatiguing protocol. Additionally, level running-induced fatigue increased knee flexion at initial contact and maximum knee flexion during swing. An increase in vertical centre of mass displacement was found in novice but not in experienced runners with fatigue. Overall, runners changed their gait pattern due to fatigue by moving to a smoother gait pattern (i.e. more knee flexion at initial contact and during swing, decreased leg stiffness). However, these changes were not sufficient to prevent an increase in peak accelerations at the tibia after a fatigue protocol. Large inter-individual differences in responses to fatigue were reported. Hence, it is recommended to investigate changes in running kinematics as a result of fatigue on a subject-specific level since group-level analysis might mask individual responses.


Assuntos
Corrida , Humanos , Fenômenos Biomecânicos/fisiologia , Corrida/fisiologia , Joelho/fisiologia , Fadiga Muscular/fisiologia , Fadiga/etiologia
11.
Sensors (Basel) ; 22(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080810

RESUMO

Pattern recognition in EMG-based control systems suffer from increase in error rate over time, which could lead to unwanted behavior. This so-called concept drift in myoelectric control systems could be caused by fatigue, sensor replacement and varying skin conditions. To circumvent concept drift, adaptation strategies could be used to retrain a pattern recognition system, which could lead to comparable error rates over multiple days. In this study, we investigated the error rate development over one week and compared three adaptation strategies to reduce the error rate increase. The three adaptation strategies were based on entropy, on backward prediction and a combination of backward prediction and entropy. Ten able-bodied subjects were measured on four measurement days while performing gait-related activities. During the measurement electromyography and kinematics were recorded. The three adaptation strategies were implemented and compared against the baseline error rate and against adaptation using the ground truth labels. It can be concluded that without adaptation the baseline error rate increases significantly from day 1 to 2, but plateaus on day 2, 3 and 7. Of the three tested adaptation strategies, entropy based adaptation showed the smallest increase in error rate over time. It can be concluded that entropy based adaptation is simple to implement and can be considered a feasible adaptation strategy for lower limb pattern recognition.


Assuntos
Membros Artificiais , Eletromiografia , Marcha , Humanos , Extremidade Inferior , Reconhecimento Automatizado de Padrão
12.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36176085

RESUMO

Measuring gait and balance recovery is necessary post stroke. In an earlier study, we developed a minimal three Inertial Measurement Units (IMUs) system called Portable Gait Lab (PGL). The PGL used the Centroidal Moment Pivot (CMP) assumption to estimate relative foot and centre of mass (CoM) positions, and thereby estimate gait parameters in healthy participants. In this study, we validate the feasibility of the PGL to track foot and CoM trajectory during gait in four persons with chronic stroke. Spatiotemporal gait and balance measures were estimated from the foot and CoM trajectories, and compared with the reference ForceShoes™. Each participant made at least 20 steps, and the PGL was able to track foot and CoM trajectories with a root mean square of the differences with the reference of 2.9 ± 0.2 cm and 4.6 ± 3.6 cm. The distances between either foot at the end of the walking task, and step lengths were estimated by PGL with an average error with the reference of 1.98 ± 2.2 cm and 7.8 ± 0.1 cm respectively across participants. We show that our approach was able to estimate spatiotemporal and balance parameters related to gait quality in a clinically useful manner. We recommend conducting further studies to study the feasibility of using the PGL system for variable gait patterns measured post stroke.


Assuntos
Marcha , Acidente Vascular Cerebral , Humanos , Fenômenos Biomecânicos , , Caminhada
13.
IEEE Int Conf Rehabil Robot ; 2022: 1-5, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36176097

RESUMO

Stroke is one of the leading causes of disability in adults in the European Union. It often leads to motor impairments, such as a hemiparetic lower extremity. Research indicates that early task-specific and intensive training promotes neuroplasticity and leads to recovery and/or compensation. One way to provide intensive training early after a stroke is via robot-supported training. A rehabilitation robot was designed by Life Science Robotics (Aalborg, Denmark) that can provide continuous repetitive movements of the hip, knee, and/or ankle in e.g., a lying position. In order to emphasize active contribution by the patient, actively triggered electrical stimulation (via muscle activation) can be combined with robotic assistance. The current study aims to compare different threshold estimation methods for detection of movement intention from muscle activity for actively triggered electrical stimulation during robot-supported leg movement in stroke patients. Three sub-acute stroke patients were included for a single measurement session. They performed knee extension and/or ankle dorsal flexion with four different threshold estimation methods to assess the intention detection threshold to initiate electrostimulation. The thresholds were based on the resting level of muscle activity (of m. rectus femoris or m. tibialis anterior) plus two or three times the standard deviation of the average resting value, or the resting level plus 5% or 10% of the peak muscle activity during a maximal voluntary contraction. The results showed that the method based on the resting muscle activity plus two times the standard deviation was the most stable across the three included stroke patients. This method had a detection success rate of 86.7% and was experienced as moderately comfortable. In conclusion, performing knee extension and/or ankle dorsal flexion with electromyography triggered electrostimulation is feasible in sub-acute stroke patients. Muscle activity-triggered electrostimulation combined with robotic support based on a threshold of resting levels plus two times the standard deviation seems to detect movement initiation most consistently in this small sample of sub-acute stroke patients.


Assuntos
Terapia por Estimulação Elétrica , Robótica , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Adulto , Eletromiografia , Humanos , Perna (Membro) , Extremidade Inferior , Robótica/métodos , Reabilitação do Acidente Vascular Cerebral/métodos
14.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36176120

RESUMO

In an ongoing study, an assistive wearable soft-robotic glove is tested at home for 6 weeks by subjects with decreased handgrip strength, due to different hand injuries or diseases, to assess whether use of this assistive grip-supporting glove will result in improved hand strength/ function. An interim analysis of the available dataset of 46 participants showed that (unsupported) grip strength and hand function improved after using the soft-robotic glove as assistive aid during activities of daily living (ADLs) during 6 weeks at home. After glove use is ended, this is maintained for at least 4 weeks. Considering that in the current situation the analysis is underpowered, these interim results are promising for finding a clinical (therapeutic) effect of using a soft-robotic glove as assistance during ADLs. If this is the case, this might open up entirely new opportunities for extending rehabilitation into people's homes, while also providing them with assistance to directly support performance of daily activities. Such a combination is becoming available with the development of mature and user-friendly wearable soft-robotic devices. This would enable very high doses of training throughout the day, in the most functional, task-specific way possible, and possibly prevention of learned non-use.


Assuntos
Procedimentos Cirúrgicos Robóticos , Dispositivos Eletrônicos Vestíveis , Atividades Cotidianas , Mãos , Força da Mão , Humanos
15.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36176165

RESUMO

Synchronization of motion capture systems with other modalities in out-of-the-lab settings is not trivial. Various synchronization methods exist, such as using servers or transistor-transistor-logic pulses. However, not all measurement set-ups allow for such synchronization methods. Therefore, we have developed and validated an acceleration based post-measurement method to synchronize an IMU based motion capture system and an EMG measurement device. On top of the thigh IMU an additional accelerometer was placed which was connected to the analog input of the EMG device. By applying cross-correlation continuously, the similarities in the measured acceleration by the two measurement systems can be used for synchronization. We performed a validation measurement on seven able-bodied subjects and tested various correlation window sizes in hour long measurements in an out of the lab setting. It can be concluded that the developed method works for different activities when a suitable window length is chosen for cross-correlation. If no other options are available for synchronization, this correlation based method using an additional accelerometer is a viable option.


Assuntos
Aceleração , Dispositivos Eletrônicos Vestíveis , Fenômenos Biomecânicos , Humanos , Movimento (Física)
17.
Front Robot AI ; 9: 869476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35546902

RESUMO

Proportional control using surface electromyography (EMG) enables more intuitive control of a transfemoral prosthesis. However, EMG is a noisy signal which can vary over time, giving rise to the question what approach for knee torque estimation is most suitable for multi-day control. In this study we compared three different modelling frameworks to estimate knee torque in non-weight-bearing situations. The first model contained a convolutional neural network (CNN) which mapped EMG to knee torque directly. The second used a neuromusculoskeletal model (NMS) which used EMG, muscle tendon unit lengths and moment arms to compute knee torque. The third model (Hybrid) used a CNN to map EMG to specific muscle activation, which was used together with NMS components to compute knee torque. Multi-day measurements were conducted on ten able-bodied participants who performed non-weight bearing activities. CNN had the best performance in general and on each day (Normalized Root Mean Squared Error (NRMSE) 9.2 ± 4.4%). The Hybrid model (NRMSE 12.4 ± 3.4%) was able to outperform NMS (NRMSE 14.3 ± 4.2%). The NMS model showed no significant difference between measurement days. The CNN model and Hybrid models had significant performance differences between the first day and all other days. CNNs are suited for multi-day torque estimation in terms of error rate, outperforming the other two model types. NMS was the only model type which was robust over all days. This study investigated the behavior of three model types over multiple days, giving insight in the most suited modelling approach for multi-day torque estimation to be used in prosthetic control.

18.
Sensors (Basel) ; 22(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35458993

RESUMO

Physical exercise (PE) is beneficial for both physical and psychological health aspects. However, excessive training can lead to physical fatigue and an increased risk of lower limb injuries. In order to tailor training loads and durations to the needs and capacities of an individual, physical fatigue must be estimated. Different measurement devices and techniques (i.e., ergospirometers, electromyography, and motion capture systems) can be used to identify physical fatigue. The field of biomechanics has succeeded in capturing changes in human movement with optical systems, as well as with accelerometers or inertial measurement units (IMUs), the latter being more user-friendly and adaptable to real-world scenarios due to its wearable nature. There is, however, still a lack of consensus regarding the possibility of using biomechanical parameters measured with accelerometers to identify physical fatigue states in PE. Nowadays, the field of biomechanics is beginning to open towards the possibility of identifying fatigue state using machine learning algorithms. Here, we selected and summarized accelerometer-based articles that either (a) performed analyses of biomechanical parameters that change due to fatigue in the lower limbs or (b) performed fatigue identification based on features including biomechanical parameters. We performed a systematic literature search and analysed 39 articles on running, jumping, walking, stair climbing, and other gym exercises. Peak tibial and sacral acceleration were the most common measured variables and were found to significantly increase with fatigue (respectively, in 6/13 running articles and 2/4 jumping articles). Fatigue classification was performed with an accuracy between 78% and 96% and Pearson's correlation with an RPE (rate of perceived exertion) between r = 0.79 and r = 0.95. We recommend future effort toward the standardization of fatigue protocols and methods across articles in order to generalize fatigue identification results and increase the use of accelerometers to quantify physical fatigue in PE.


Assuntos
Corrida , Acelerometria , Fenômenos Biomecânicos , Exercício Físico , Fadiga , Humanos , Extremidade Inferior
19.
Sensors (Basel) ; 22(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35161701

RESUMO

A Drift-Free 3D Orientation and Displacement estimation method (DFOD) based on a single inertial measurement unit (IMU) is proposed and validated. Typically, body segment orientation and displacement methods rely on a constant- or zero-velocity point to correct for drift. Therefore, they are not easily applicable to more proximal segments than the foot. DFOD uses an alternative single sensor drift reduction strategy based on the quasi-cyclical nature of many human movements. DFOD assumes that the quasi-cyclical movement occurs in a quasi-2D plane and with an approximately constant cycle average velocity. DFOD is independent of a constant- or zero-velocity point, a biomechanical model, Kalman filtering or a magnetometer. DFOD reduces orientation drift by assuming a cyclical movement, and by defining a functional coordinate system with two functional axes. These axes are based on the mean acceleration and rotation axes over multiple complete gait cycles. Using this drift-free orientation estimate, the displacement of the sensor is computed by again assuming a cyclical movement. Drift in displacement is reduced by subtracting the mean value over five gait cycle from the free acceleration, velocity, and displacement. Estimated 3D sensor orientation and displacement for an IMU on the lower leg were validated with an optical motion capture system (OMCS) in four runners during constant velocity treadmill running. Root mean square errors for sensor orientation differences between DFOD and OMCS were 3.1 ± 0.4° (sagittal plane), 5.3 ± 1.1° (frontal plane), and 5.0 ± 2.1° (transversal plane). Sensor displacement differences had a root mean square error of 1.6 ± 0.2 cm (forward axis), 1.7 ± 0.6 cm (mediolateral axis), and 1.6 ± 0.2 cm (vertical axis). Hence, DFOD is a promising 3D drift-free orientation and displacement estimation method based on a single IMU in quasi-cyclical movements with many advantages over current methods.


Assuntos
Aceleração , Corrida , Fenômenos Biomecânicos , Humanos , Movimento , Rotação
20.
J Neuroeng Rehabil ; 19(1): 13, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35090501

RESUMO

BACKGROUND: Exoskeletons are working in parallel to the human body and can support human movement by exerting forces through cuffs or straps. They are prone to misalignments caused by simplified joint mechanics and incorrect fit or positioning. Those misalignments are a common safety concern as they can cause undesired interaction forces. However, the exact mechanisms and effects of misalignments on the joint load are not yet known. The aim of this study was therefore to investigate the influence of different directions and magnitudes of exoskeleton misalignment on the internal knee joint forces and torques of an artificial leg. METHODS: An instrumented leg simulator was used to quantify the changes in knee joint load during the swing phase caused by misalignments of a passive knee brace being manually flexed. This was achieved by an experimenter pulling on a rope attached to the distal end of the knee brace to create a flexion torque. The extension was not actuated but achieved through the weight of the instrumented leg simulator. The investigated types of misalignments are a rotation of the brace around the vertical axis and a translation in anteroposterior as well as proximal/distal direction. RESULTS: The amount of misalignment had a significant effect on several directions of knee joint load in the instrumented leg simulator. In general, load on the knee joint increased with increasing misalignment. Specifically, stronger rotational misalignment led to higher forces in mediolateral direction in the knee joint as well as higher ab-/adduction, flexion and internal/external rotation torques. Stronger anteroposterior translational misalignment led to higher mediolateral knee forces as well as higher abduction and flexion/extension torques. Stronger proximal/distal translational misalignment led to higher posterior and tension/compression forces. CONCLUSIONS: Misalignments of a lower leg exoskeleton can increase internal knee forces and torques during swing to a multiple of those experienced in a well-aligned situation. Despite only taking swing into account, this is supporting the need for carefully considering hazards associated with not only translational but also rotational misalignments during wearable robot development and use. Also, this warrants investigation of misalignment effects in stance, as a target of many exoskeleton applications.


Assuntos
Exoesqueleto Energizado , Fenômenos Biomecânicos , Humanos , Articulação do Joelho , Perna (Membro) , Amplitude de Movimento Articular , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...